



Localization Tutorial

**KU LEUVEN** 

Phoenix Project November 9, 2015







- 1 Localization Process in Phoenix
- 2 Localization techniques
- 3 Range-based Localization
  - Techniques & Notation
  - Localization ambiguities
  - Localization Complexity & Localizability Constraints

# (n)

#### 1 Localization Process in Phoenix

- 2 Localization techniques
- 3 Range-based Localization
  - Techniques & Notation
  - Localization ambiguities
  - Localization Complexity & Localizability Constraints

Inaccessible

Environment

Extraction

((.))

(())

## Localization Process in Phoenix

#### Project goal

Insertion

 $((\bullet))$ 

- Explore underground systems with sensors
- Sensor measurements enable e.g. temperature or pressure profiles
- Sensor positioning needed for measurement mapping

(())

(())

(())

((•))

(()





#### 1 Localization Process in Phoenix

### 2 Localization techniques

- 3 Range-based Localization
  - Techniques & Notation
  - Localization ambiguities
  - Localization Complexity & Localizability Constraints

## Localization techniques

(n)

- Anchor-based: A subset of the nodes have a priori known positions. Nodes with unknown position use positioning information from anchors to determine their <u>absolute</u> position
- Anchor-free: No a priori knowledge on the positions of any node. Only <u>relative</u> coordinates can be obtained

- Range-based: Relative distances to other nodes are measured
- **Angle-based:** Angle information to other nodes is measured
- **Range-free:** Only connectivity information available



- 1 Localization Process in Phoenix
- 2 Localization techniques
- 3 Range-based Localization
  - Techniques & Notation
  - Localization ambiguities
  - Localization Complexity & Localizability Constraints



- 1 Localization Process in Phoenix
- 2 Localization techniques
- 3 Range-based Localization
  - Techniques & Notation
  - Localization ambiguities
  - Localization Complexity & Localizability Constraints



Figure: RSS measurement

#### System model:

$$P_{r}(d) = P_{0} - 10\gamma \log_{10} d + S$$
$$\operatorname{Var}(\hat{d}) \ge \left(\frac{\ln 10\sigma_{s}}{10\gamma}d\right)^{2}$$

- S: shadowing with variance  $\sigma_s^2$
- $\gamma:$  path-loss exponent



Figure: Two-way TOA ranging

System model:

$$\begin{split} \mathbf{r}(t) &= \sqrt{E}\mathbf{p}(t-\tau) + \mathbf{n}(t) \\ \mathrm{Var}(\hat{\mathbf{d}}) &\geq \frac{c^2}{8\pi^2\beta^2\,\mathrm{SNR}} \end{split}$$

 $\begin{aligned} & \text{SNR} \triangleq E/N_0 \\ & \beta \text{: effective bandwidth} \\ & \beta^2 = \int_{\mathbb{R}} f^2 |P(f)|^2 \ df / \int_{\mathbb{R}} |P(f)|^2 \ df \end{aligned}$ 



Figure: Two-way TOA ranging

- Bidirectional communication required
- Data stored by each sensor:
  - ID of node B
  - Time stamp
  - ToF or distance to node B (can be used for online sensor adaptation)



Figure: Example Network





- 1 Localization Process in Phoenix
- 2 Localization techniques
- 3 Range-based Localization
  - Techniques & Notation
  - Localization ambiguities
  - Localization Complexity & Localizability Constraints



## $(v_1, x_1)$ Localization problems due to ambiguities • Consider simplified, noise-less case in 2D: $V_3$ • Two fixed nodes $v_1, v_2$ : known position $\tilde{\mathbf{x}}_3$ ? $\mathbf{x}_3?$ Localize v<sub>3</sub>'s position same measurements $\rightarrow$ different solutions $(v_2, x_2)$ Figure: 3-connected graph with flex-ambiguity

- Realistic, noisy case:
  - Even more ambiguities present due to noise variance

#### Impact of noisy range measurements

- Three anchor (or already localized) nodes
- Fourth sensors to be localized
- Simplified case: noise only on measurements of *v*<sub>3</sub>
  - By range measurement d<sub>34</sub>, d<sub>34</sub>: two possible solutions: x, x



Figure: Network with noisy range measurements



- 1 Localization Process in Phoenix
- 2 Localization techniques
- 3 Range-based Localization
  - Techniques & Notation
  - Localization ambiguities
  - Localization Complexity & Localizability Constraints



#### Complexity of Localization in noise-less case

The localization of sensors by means of range measurements is  $\mathcal{NP}$ -hard and it's of combinatorial nature (Complexity  $\stackrel{a.s.}{\sim} \exp(\# \text{sensors})$ ).

- Special cases
  - Trilateration (Quadrilateration) graphs: polynomial (or even linear) in # sensors
  - There exists an ordering for  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  in  $\mathbb{R}^d$  such that the sensors can be localized by  $|\mathcal{V}| d$  consecutive trilaterations



- Unique localizability constraints for noisy case unknown
- For noise-less case in *d* dimensions
  - at least d+1 anchors in general position
  - corresponding graph must be globally rigid and (d+1)-connected
    - k-connectivity: removing any k-1 vertices doesn't render  $\mathcal G$  unconnected
- Noise-less case in 2D:
  - Graph  ${\mathcal G}$  6-connected  $\Rightarrow$  global rigidity
  - Graph  $\mathcal{G}(R)$  2-connected  $\Rightarrow \mathcal{G}(2R)$  globally rigid

R: sensor communication range

- Noise-less case in 3D:
  - Graph  $\mathcal{G}(R)$  2-connected  $\Rightarrow \mathcal{G}(3R)$  globally rigid
- $\Rightarrow$  High connectivity essential for sensor localizability



- 1 Localization Process in Phoenix
- 2 Localization techniques
- 3 Range-based Localization
  - Techniques & Notation
  - Localization ambiguities
  - Localization Complexity & Localizability Constraints

## Summary

# (n)

#### Steps obtain sensor positions

- Collect timing or distance measurements from all agents
- Perform joint localization
  - Estimate agent positions at each measurement instance

#### Unique localization requirements in noise-less 3D case

- Minimal requirements: at least 4-connectivity
- No constructive criteria known
- Conjecture: 12-connectivity  $\Rightarrow$  global rigidity





#### Davide Dardari

"Short-range Localization Techniques for Wireless Sensor Networks".

## Anderson et. al.

"Graphical properties of easily localizable sensor networks".

## Eren et. al.

"Rigidity, Computation, and Randomization in Network Localization".

#### Aspnes et. al.

"A Theory of Network Localization".