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Introduction

‚ Evolutionary Biology is a science concerned with
‚ Diversity of life, differences and similarities among organisms
‚ Adaptive and non-adaptive characteristics of organisms [3]

‚ Evolutionary algorithms (EA) is an umbrella term used to describe
Computer-based problem solving systems which use computational
models of evolutionary processes as key elements in their design
and implementation [5]
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Introduction
However, they all share the following attributes [15]:

‚ Individual: a candidate solution to a given problem
‚ Genotype: the genetic presentation of an individual
‚ Phenotype: the manifestation of genotype in an individual
‚ Fitness Functions: one or more function that associates a numerical
score to each phenotype

‚ Population: the pool of multiple individuals undergoing evolution
‚ Selection: an operator that selects which individuals shall reproduce,
based on their fitness

‚ Reproduction: one or more genetic operators (e.g. crossover &
mutation that create new individuals from selected parents)

‚ Hereditary: parent and offspring present similar characteristics
‚ Diversity: individuals of the population are different to some extent
‚ Stopping criteria: one or more criterion used to stop the evolutionary
process
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Single-Objective EA

Algorithm 1 : Evolutionary Algorithm( )
1: procedure Standard_EA
2: initialize P Ź Population
3: while not stopping criterion do
4: F Ð evaluate (P) Ź Fitness
5: P Ð select (P,F)
6: P Ð reproduce (P,F)
7: end while
8: end procedure

Algorithm Citation
Evolutionary Strategy (ES) Schwefel, 1966
Genetic Algorithms (GA) Holland, 1988
Differential Evolutionary (DE) Storn, 1997
Classifier Systems (CS) Holland, 1977

Table: Single-objective EA
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Figure: Evolutionary algorithm: an example
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Multi-Objective EA
‚ The non-dominated
set of all feasible
solutions is called
Pareto-optimal front

‚ Objective of
multi-optimization
algorithms is to
converge to the
Pareto-optimal front

‚ EA suit well
multi-objective
optimization
problems due to their
population approach
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Figure: Pareto-optimal front: Examples
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Multi-Objective EA

Algorithm Citation
Vector evaluated GA (VEGA) Schaffer, 1984
Vector optimized EA (VOEA) Kursawe, 1990
Weight based GA (WBGA) Hajela and Lin, 1993
Multiple objective GA (MOGA) Fonseca and Fleming, 1993
Non-dominated sorting GA (NSGA) Srinivas and Deb, 1994
Niched Pareto GA (NPGA) Horn et al., 1994
Predator-prey ES Laumanns et al., 1998

Table: Multi-objective evolutionary algorithms [4]

7



Objective-free EA

‚ An alternative idea is to
abandon the goal of
improving performance

‚ One subgroup of
objective-free algorithms
is called illuminating
algorithms as they are
designed to return the
highest-performing
solution in the feature
space, thus illuminating
the fitness potential of
each region of that space

(a) Maze definition (b) NS (c) Fitness based

Figure: Novelty search: a comparison [9]

‚ Novelty search (NS) algorithm abandons
the search for objective and rather
searches for behavioural novelty. In many
problems, it has shown supremacy
against fitness based algorithms
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Objective-Free EA

‚ MAP-Elites algorithm, on
the other hand, attempts
to simplify the search
space with user defined
features [13]

‚ MAP-Elites exploits
parallelisms since the
search for a solution in
any single cell is aided by
the simultaneous search
for solutions in other cells

  

Feature 1

Feature 2

Feature 3

Performance

High Dimensional Problem

MAP-Elites

Figure: MAP-Elites algorithm

‚ MAP-Elites shows relationships between
dimensions of interest and performance
by illuminating fitness potential of the
entire feature space, not only
high-performing areas
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Co-Evolution

Figure: Predator-Prey Co-evolution

‚ Competitive co-evolution is
where two different species co-
evolve against each other e.g.
predator-prey & parasite-host

‚ Helps prevent stagnation in local
minima as it continuously
change fitness landscape

‚ Increases adaptivity by
producing an evolutionary arms
race

‚ Minimizes the role of
human-designed fitness
function, thus more autonomous

‚ Problems such as strategy
recycling, dynamic fitness
landscape and red queen effect
start emerging
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Co-evolution

‚ Cooperative co-evolution is
found in nature in many species

‚ Some cooperation schemes
can’t be easily modelled such as
altruism

‚ Using adequate fitness function
definition, co-operation can be
realized (e.g. more fitness points
granted for cooperation)

‚ Like competitive co-evolution,
similar problems arise
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Figure: Cooperation schemes [10]
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Figure: Cooperative co-evolution: an example
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EA Examples

Video: EA realization on a landscape of multiple Gaussian functions
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EA Examples

Video: Multiple runs of EA on different landscapes
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Evolving Physical Design

Video: Evolving flexible locomotion for bipedal creatures [6]
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Evolving Physical Design

‚ Space Technology 5 (ST5) is NASA’s mission exploring earth’s
magnetic fields

‚ The planned nano-satellites orientation and altitude changed, thus
requiring a new antenna design

‚ Instead of manually re-designing, NASA’s Engineers developed an
EA to design the first evolved antenna in outer-space

Figure: Spacecraft model Figure: Best evolved antenna [7]
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Evolving Physical Design

‚ RoboGen is an open
source platform for
evolving robots’
physical designs

‚ It focuses on evolving
easily manufactured
robots with use of a
small set of low-cost,
off-the-shelf electronic
components

Figure: RoboGen Framework [1]

Figure: RoboGen: an example [2]
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EA in Software

Video: Supermario using EA [14]
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EA in Software

Algorithm Citation
Evolutionary repair of faulty software Arcuri, 2011
Co-evolutionary automatic programming for software development Arcuri & Yao, 2010
MicroGP: An evolutionary assembly program generator Squillero, 2005

Table: EA developed software examples
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EA in Hardware

‚ Genotype-phenotype
mapping is a crucial step
in EA

‚ One idea is to map the
genotype using
lookup-table with a
pre-assigned number to
different circuit element
types
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Figure: Analogue circuit genotype example [11]
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EA in Hardware

‚ Like analogue circuits,
digital circuits can be
similarly mapped

‚ Encapsulation is possible,
and different levels of
granularity can be
represented
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Figure: Digital circuit genotype example[11]
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EA in Hardware

‚ Another way of
genotype
mapping is tree
representation

‚ Different
connection types
can be mapped
to alphabets

Figure: Tree gynotype representation
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EA in Hardware

Invention Date Inventor Patent
Low-voltage balun 2001 Sang Gug Lee 6,265,908

(balance/unbalance) circuit
Mixed analog-digital circuit for 2000 Turget Sefket Aytur 6,013,958

variable capacitance
Voltage-Current 2000 Akira Ikeuchi 6,166,529
conversion Circuit Naoshi Tokuda

Low-voltage high current circuit 2001 Timothy Daun-Lindberg 6,211,726
for testing a voltage source Micheal Miller

Low voltage cubic 2001 Stefano Cipriani 6,160,427
function generator Anthony Takeshain
Tunable integrated 2001 Robert Irvine 6,225,859

active Bernd Kolb

Table: List of patents re-invented using EA [8]
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Conclusion

‚ Showed evolutionary algorithms’ design axioms and demonstrated
the algorithm using multiple examples
‚ Perfect for problems that can’t or are hard to be mathematically formalized
‚ Single objective, multi-objective and objective free optimization
‚ Trade-off between exploration and exploitation
‚ Robust in dynamic environment
‚ Cons: high computational cost as many evolutionary cycles are needed

‚ Highlighted use of Co-evolution
‚ Co-evolution dynamics can be unpredictable (e.g. strategy recycling, dynamic fitness
landscape, red queen effect)

‚ Demonstrated EA’s uses in both physical design, software
architecture and circuit design
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