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Phoenix hardware

e Phoenix node will consist of

— Sensors and timers

— Sensor interface with wake-up detectors
— Digital processing system with memory

— US (maybe RF) actuator and receiver
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Phoenix energy source

 Phoenix node is powered by a battery

— 2cm”3 battery in INCAS3 mote in project phasel
— 4mm*3 (?) battery in mm-size node later on
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It’s all about energy...

e Batteryis a can full of energy

e Energy consumed by each “operation”, being
— Taking sensor measurement, or actuating US or RF actuator
— Processing sensor data with digital operations
— Storing or retrieving data

e Constant energy consumed by “always on” circuits
— Leaking digital gates and memory
— Running timer
— US receiver always in “listening mode”?
Note: Power consumption = average energy consumed per 1 second
Energy is expressed in Joules, power in Watts (=Joules/sec)
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Battery Trade-offs
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[4] H. Nakazawa, et al., “Charge—Discharge Characteristics
of All-Solid-State Thin-Filmed Lithium-lon Batteries Using
Amorphous Nb205 Negative Electrodes,” Journal of Power
Sources 174, pp. 838-842, July 2007.
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[5] www.cymbet.com/pdfs/DS-72-41.pdf
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Energy constraints for Phoenix

 Phoenix node is powered by a battery
— 2cm”3 battery in INCAS3 mote in project phasel
=>» (48h): 170J, or ImW on average
— 4mm*3 (?) battery in mm-size node later on
=>» (48h): 0.35J, or 2uW on average
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HOW MUCH ENERGY TO EACH
FUNCTION?

Sensing
Actuation
Processing
Memory

Timing
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1. Versatile Sensing

e \Versatile sensing circuit for multiple sensors
 No need for extremely high precision sensing
e Could be duty-cycled for reducing power

* Needs smart wake-up monitors
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1. Versatile Sensing:
energy consumption

e Energy per sensor measurement depends on:
— Required sensitivity

— Required sensor resolution (precision)

— Required sensor biasing (depends on sensor type)

=» Hence rough to give detailed numbers (needs specs)

Sensor type Energy per sensor
measurement

Temperature
Pressure
Gyroscope
Magnetometer

Accelerometer

1-10nJ
1-10J
75
7.5
100nJ
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1. Versatile Sensing:
energy scenario

e Scenario: Take only accelero-measurements

=» Phoenix mm3 size nodes allow 20 measurements
per second (on all axis together)

=» Phoenix cm3 size nodes allow 10ksamples per
second, or 200kHz sampling for 2.5 hours

NEED for
e Duty cycling

e Smart wake-up circuits (across multi-sensors)




2. Actuation

* US and RF measurement also need actuation. This is
typically more energy consuming

* Too many uncertainties to quantifv now. But for now:
— US or RF receive: 0.1nJ/bit
— US or RF transmit: 10-100nJ/bit -/«

US actuator
(emitting) DD))

Is probably rather optimistic... T | —
- ADC>“‘_ F”ti“ (receiving)
I

* If we want the US and RF receivers to always “hear”
other motes, they have to be constantly monitoring

=> Will consume constant power (e.g. 10puW)

See separate tutorial on US sensing/processing!
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3. Processing
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3. Processing energy

e Computations can be done
A. On processor or on dedicated HW accelerator
B. In processor in fixed, or floating point
Rough energy numbers:

Processing type Energy per (multiply)
operation

Floating point 100pJ/operation
Fixed point (16bit) 10pJ/operation

HW accelerator 1pJ/operation

Note: Circuits that are on, leak energy. More so in advanced CMOS.

As our system will process SLOW, latest silicon technology not
desirable. = e.q. go for 90nmCMOS
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4. Memory

e Memory spend energy in three ways:
1. Everytime you write into it
2. Every time you read from it
3. Constant to retain data (storage)

e Best to have volatile memory for intermediate data (buffer),
and store long term things to non-volatile.

Memory type Write energy Read energy | Storage energy
(per bit) (per bit) (per bit)

Volatile (flipflop) ?

Volatile (SRAM) 40p) 40p) 0.3pW
Non-volatile (on- S5ul 40p) ~0
chip)

Non-volatile (Flash)  5ul Sul 0

(On-chip memory limited to few (10’s of)kB)
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5. Timing

e Toremember: when events occur and to time localization measurements, we need a
time reference (watch) = ‘always on’, so power has to be low

* A frequency reference might also be needed for US/RF communication = much
higher frequency, but can be duty-cycled

* Finally, a clock is probably needed for the DSP and mixed-signal blocks.

 Multiple frequencies can be derived from each other or use separate reference

 Power of the timer depends on: frequency, phase noise, variation over voltage and
temperature (ppm), type of oscillator

Oscillator type Example performance from literature

Crystal 50ppm, 2nW, 32kHz, 1.5mm?3

MEMS 10ppm, 1uW, 32kHz, 1.2mm?3

Ring ~2000ppm, 190nW, 32kHz, <<0.1mm3
FBAR/SAW/BAW >>100MHz, >>uW

LC TBD

See separate tutorial on timing!
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6. Power management

e All power for these circuits has to be derived from a
common battery voltage

e This is typically done with voltage conversion and
regulation blocks

e Their efficiency (output power/input power) is
typically <100%, and is much lower for small current
values.




Conclusions

Every “action” in our system costs energy

By characterizing these energy cost, the system can
be optimized toward information maximization
under the limited energy budget.

Need to determine which sensors and processing is
necessary

Need to define their specification to improve energy
estimates

Duty cycling and instinct-based smart wake-up will
be cruciall
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